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Introduction
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A Signal Hidden in Quantum Random Noise

The signal and noise probability distributions are identical.
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A Partially Hidden Signal

The signal and noise probability distributions are slightly different.
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A Detectable Signal

The signal and noise probability distributions are quite different.
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Primary Contributions
Quantum random bits x;. Heisenberg uncertainty principle.

Axiom 1: No bias. P(x; =0) = P(x; =1) = %

Axiom 2: Independence. Event H; = {x1 = b1, ..., x; = b;}.
Every bj in {0,1}. P(xj41 =0 | Hi) = P(xjt1 = 1 | Hi) =

MM—A"‘

e Hiding procedure: O(n) fast, inexpensive, post-quantum.

e If m signal and p noise bits satisfy axioms 1 & 2, the signal
can be hidden arbitrarily close to perfect secrecy (p — c0).

e A post-quantum key exchange with much smaller key sizes.

e Easy for signal to satisfy axioms 1 & 2. Random keys satisfy
axioms 1 & 2. Plaintext: encrypt before hiding or embed
signal in higher dimensional Hamming space.
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Favorable Properties

e Hiding public keys hinders Mallory-in-the-middle (MITM)
attacks that can attack a Diffie-Hellman exchange.

e Search complexity for hidden, public keys substantially
exceeds the conjectured complexity of a public key.

e Quantum complexity is comparable to Grover's algorithm.
Post-quantum Internet of Things! Less than $1.00 per device.

e Implementable with TCP/IP infrastructure & an off-the-shelf
quantum random number generator (QRNG flip-flop).

e QRNG flip-flops can generate 3.3 Gigabits per second.

e Decentralization. Alice and Bob have their own QRNGs.
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Related Work

e In 1550, Cardano proposed a rectangular grid for writing hidden
messages. Protection was not adequate.

e Quantum cryptography (Weisner, BB84) relies on the uncertainty
principle. When Eve measures a photon’s polarization, it destroys
the other orthogonal component. Requires polarized photons and
special infrastructure to transmit polarized photons. Alice and Bob
require a shared authentication secret to stop Mallory interfering
with the public channel.

e Quantum secure direct communication (QSDC). QSDC claims
advantages over BB84: QSDC is deterministic; every photon
contributes a key bit so QSDC is more efficient; QSDC requires
expensive quantum hardware and a new physical infrastructure
when feasible.

Hiding Signals in Quantum Random Noise Michael Stephen Fiske HICSS-58



Hiding Procedures
©0000000

A Simple Hiding Example
Signal k1 ko ks = 001. m = 3.
Noise nrrmrsrery = 10 01 010. p=17.
Map (h h ) =(836). n=10. n=m+ p always holds.
Bit k1 = 0 is hidden at location 8.
Bit ko = 0 is hidden at location 3.

Bit k3 = 1 is hidden at location 6.

Hidden signal S(kikaks, nrarrarsrer;) = 10001 1 0 0 10.
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Creating a Quantum Random Scatter Map

Input: n
Variables: n, j, r, t, h,b,... 1.
h=1 hb:=2 ... Il,:=n ji=n

while j >2 {

A QRNG randomly chooses r in {1,2,...,/}.

t:=1
lr =1
=1t
Jj=j-1

}

Output: 7= (Il b ... l,,)
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Scatter Map Definitions

Map 7= (h k...l,). Signal ki ... km. Noise ri,r,...r1,.

Signal Locations {h h ... In}.

Noise Locations N'(h b ... Im) ={1,....n} = {h,b,...,Im}.
Define scatter function S : {0,1}" x {0,1}* — {0,1}".
S(ki,. .. km, ri, .. ry) = (51,...5n).

Signal bits s, 1= kq; sy, = ko; s; = km.

Noise bits sj, := rx. ik is kth smallest number in N'(h ... /).
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Hide a Signal with Scatter Map 7

Input: Signal ki ko ... km. Map m=(h h...lp).

Alice’s QRNG creates noise rp rn ... r,., p=n—m.
Alice’s map 7 sets sy =ki ... S|, = km.

Per S(ki,...,km, r,rn...r,), Alice fills in S =(s1...sp).
Alice sends S to Bob.

Output: Bob’s m extracts ki ... kp from S.
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A Random Hidden Nonce Makes ™ Reusable

e Alice and Bob share .

Each transmission uses a distinct hiding map o.

e Each time Alice’s QRNG generates a new random nonce N.
e Alice executes procedure 3 to derive o from N & .

e Alice hides her signal with map o.

e Alice hides nonce N, using part of 7.

e Bob uses part of 7 to extract nonce N from the noise.

e Bob executes procedure 3 to derive o from A & .

e Bob uses o to extracts Alice's signal from the noise.
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Procedure 3: Randomly Generating o

Inputs: myn. 7= (hh...l). Kk, N, jo. Wis SHA-512.
gu:=h q=h ... qgu:=l Jj:=jo.
while j >2 {

k= V(k) ® R(k,8)

N =V(k N)dR(N,8)

r:=(N mod j)+1

t:=aqr
qr ‘= 4qj
g =t
ji=j-1

}

Output: o = (ql g2 ... qm).
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Procedure 3 Explained at HICSS-58
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Mathematical Analysis of a Single Transmission

e If an m-bit signal & p bits of noise satisfy axiom 1 (unbiased)
& axiom 2 (independence), our math proofs show that a
one-time transmission S from Alice to Bob approaches perfect
secrecy as p increases.

e Perfect secrecy: the probability that a signal = ki, ko, ... km
before Eve sees S remains unchanged after Eve sees S.

o If necessary, transform the signal so it satisfies axioms 1 & 2.
Good keys automatically satisfy axioms 1 & 2.

e Qur proofs rely on the standard normal curve's geometry. A
binomial distribution approaches the standard normal curve as
n = m+ p increases. (Central Limit Theorem.)
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Application & Testing
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Hiding Public Keys in Noise

e A new key exchange can hide public keys in noise.

e Hinders MITM attack on a Public Key Exchange.
Complexity is too high for Eve.

e Implemented with the 25519 elliptic curve.?

e Mallory's complexity is 1037 for a naked 25519 public key P.
If no auxiliary information, Mallory has no halting criteria.

e Post-quantum. Reduces key sizes. A quantum computer can
break naked 25519 public keys in O(n?) or O(n?) steps.

!D.Bernstein.(2006) “Curve25519: new Diffie-Hellman speed records.”
Public Key Cryptography LNCS 3958. Springer. 207-228.
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0@000

Hiding Hinders Mallory in the Middle Attacks

Eve and Alice share secret g2d.  Eve and Bob share secret gbe.
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A Hidden 25519 Elliptic Public Key P

Alice’s hidden public key P = 119 179 68 170 227 9 166 162 231 42 145 129 112 181 218 237 103 207 26 200 158
198 149 143 41 87 194 114 11 1 214 24

o(0) = 1993. o(1) = 725. o(2) = 405. o(3) = 138. o(4) = 1825. o(5) = 1553. o(6) = 213. o(7) = 858.
n = 2048. m = 255. All signal bits are blue, except first 8 bits are . Decimal 119 =

0000101001000111101101010100110100001110010010100101011111101100100010110100001000000100101100010010
1001111111100100000010100001011011100100000010111100100110111011000111100101101011010110100101011101
1111001011000101110011011001110011100100101000111111101100101010111101011000011101010011111110110111
0011011100100001001100011111011000101101000110011011110011000100011101101011110011011000101001101001
0100010001001100101111100101110010001111111100110010111111110100100001110001110101101100111001111001
0000110000100100010011101100101101011101000011001000000110010110100010100000100100000111111001000101
1010001111111010100100110000010111011101110001110010011011111100000010001000100101101110011111100110
0110101010101011011100011110100000110000111110000111101111101111101110011011110111100011111101110011
1111001001111110101111110001010001101010111110001110001101000101110001000110011110110110110100000010
0100110100110001010001001000111110101111011010100101101010110011000000001011100101101101000111001110

1010110111101100000011001011100111010101000000100100100111011101100100000001101110100101000001110000
1011111100100111010000010001110101110111110011011101000000000100110011100111100010011010001010000111
0101010110100010100111011000001001111000110111001001100011100001011100111111101011000001000100001010
0010111111111100111000001010110101011011100100100010110011001111010001001001110101011110111111100110
1101010100100101110011000010001101110110000111011100101100011011101000100111001000111100000001110101
1111110110110011101111110011110000000111111110010111011110110110010111111100000100110111001010001010
0010000001001010110100110010000100000110101111111110111011111011101101110111100000110011101100011001
1110011001100000000000101110000011000011001011100001111001101100001111010011110000011111001101011001
0110000101101011011001000100010010001011111101011101100000011011111101011110000100001111111000000110
1100110100100001011010110010000001001001110101110011111101110101100010101100100011001001101111001110
110011111111001100111101101011100100101000101110
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Complexity of Finding a 25519 Elliptic Public Key P

o determines where P is hidden.

A random nonce hidden in the noise unpredictably changes o each
time. (Entropy Invariance.)

Every possible ¢ is uniformly reachable from 7, based on Diehard
testing of Procedure 3.

Eve knowing where P was hidden in a prior hidden transmission
reveals nothing about the location of the new P.

Since there are more than 255 Os and 1s of noise, every public key
P in {0,1}2% is possible.

Stops MITM attack: If Eve doesn't know 7, Eve must test every
possible P. That won't work.
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Statistical Testing of 25519 Public Keys & QR Noise

Statistical testing helps verify 25519 public keys (signal) and
quantum random noise satisfy axioms 1 & 2.

do 80 million times {
a QRNG creates a 25519 private key x.
compute public 25519 key P from k.
write K to noise_control_file.txt
for each bit b; in byte j of P
write bit b; in byte_j_bit_i.txt }

Diehard tests on byte_j_bit_i.txt look for statistical anomalies
in the ith bit of the jth byte of 25519 public keys.

Every file byte_j_bit_i.txt passed all 13 Diehard tests.
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Quantum Computing
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Relevance to Quantum Computing

e N unsorted databased items. Classical algorithm O(%) steps.

e Grover's quantum algorithm takes O(v/N) steps.

Grover's algorithm requires a terminating condition.

Scatter maps in L, ,) correspond to N database items.

Eve has a terminating condition for scatter maps only if Eve
has auxiliary information about o after the scatter.

Conjectured complexity is O( (ni"i;n), ) if Eve has a

terminating condition.

. \/% > 1049 for m =255 & n=8192.
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Research Summary

e A procedure hides a signal in quantum random noise.
e The locations of the signal bits randomly change each time.

e Security of the hidden signal can be made arbitrarily close to
perfect secrecy.

e A new key exchange hides public keys in noise.

e Diehard tests verified that the probability distribution of
25519 public keys satisfy axioms 1 & 2.

e Our hiding procedure can be implemented with TCP/IP
infrastructure and an inexpensive, off-the-shelf QRNG.

e |If a quantum computer can solve NP hard lattice problems in
O(n?) or O(n®), some of NIST's crypto is vulnerable.
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Factorial Growth vs. Exponential Growth

Set r(n) = 4.

log(r(n)) = log(n!) — log(2") = éz log(k) — nlog(2).

julia> factorial(4)
24

julia> 274
16

julia> function r(n)
r = factorial(big(n) ) / 2*(big(n))
return r
end

r (generic function with 1 method)

julia> r(4)
1.5

julia> factorial(4) / 274
1.5

julia> r(100)
7.362140279596095642145348079335098603605904786041407178165622553205507320042596e+127

julia> r(1000)
3.755333903791443599585571559542306426775894026657514769644025241443938219420678e+2266
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Future Work & Research

Future work should explore an Internet of Things (loT)
implementation due to being low cost and post-quantum.

Based on Grover's algorithm, we anticipate Eve's quantum

n!
(n—m)!

n — m noise bits and signal and noise satisfy axioms 1 & 2.

complexity is O( ) when m signal bits are hidden in

Future research should explore variations of Grover's algorithm to
further analyze the quantum complexity of our key exchange
hidden in noise.
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