Introduction 000000	Hiding Procedures	Application & Testing	Quantum Computing o	Summary 000

Hiding Signals in Quantum Random Noise

Michael Stephen Fiske HICSS-58

Aemea Institute

January 9, 2025

Hiding Signals in Quantum Random Noise

Michael Stephen Fiske HICSS-58

Introduction •00000 Application & Testing

Quantum Computin

Summary

A Signal Hidden in Quantum Random Noise

The signal and noise probability distributions are identical.

∃ ▶ ∢

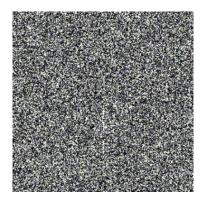
Hiding Procedure

Application & Testing

Quantum Computing

Summary 000

A Partially Hidden Signal



The signal and noise probability distributions are slightly different.

Introduction

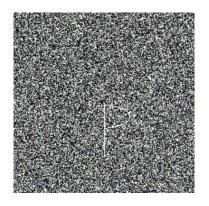
Hiding Procedures

Application & Testing

Quantum Computing

Summary 000

A Detectable Signal



The signal and noise probability distributions are quite different.

Primary Contributions

Quantum random bits x_i . Heisenberg uncertainty principle.

Axiom 1: No bias. $P(x_i = 0) = P(x_i = 1) = \frac{1}{2}$.

Axiom 2: Independence. Event $H_i = \{x_1 = b_1, \dots, x_i = b_i\}$. Every b_j in $\{0, 1\}$. $P(x_{i+1} = 0 | H_i) = P(x_{i+1} = 1 | H_i) = \frac{1}{2}$.

- Hiding procedure: O(n) fast, inexpensive, post-quantum.
- If m signal and ρ noise bits satisfy axioms 1 & 2, the signal can be hidden arbitrarily close to perfect secrecy (ρ → ∞).
- A post-quantum key exchange with much smaller key sizes.
- Easy for signal to satisfy axioms 1 & 2. Random keys satisfy axioms 1 & 2. Plaintext: encrypt before hiding or embed signal in higher dimensional Hamming space.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Favorable Properties

- Hiding public keys hinders Mallory-in-the-middle (MITM) attacks that can attack a Diffie-Hellman exchange.
- Search complexity for hidden, public keys substantially exceeds the conjectured complexity of a public key.
- Quantum complexity is comparable to Grover's algorithm. Post-quantum Internet of Things! Less than \$1.00 per device.
- Implementable with TCP/IP infrastructure & an off-the-shelf quantum random number generator (QRNG flip-flop).
- QRNG flip-flops can generate 3.3 Gigabits per second.
- Decentralization. Alice and Bob have their own QRNGs.

Introduction	Hiding Procedures	Application & Testing	Quantum Computing o	Summary 000		
Related Work						

- In 1550, Cardano proposed a rectangular grid for writing hidden messages. Protection was not adequate.
- Quantum cryptography (Weisner, BB84) relies on the uncertainty principle. When Eve measures a photon's polarization, it destroys the other orthogonal component. Requires polarized photons and special infrastructure to transmit polarized photons. Alice and Bob require a shared authentication secret to stop Mallory interfering with the public channel.
- Quantum secure direct communication (QSDC). QSDC claims advantages over BB84: QSDC is deterministic; every photon contributes a key bit so QSDC is more efficient; QSDC requires expensive quantum hardware and a new physical infrastructure when feasible.

A Simple Hiding Example

Signal $k_1 k_2 k_3 = 001$. m = 3.

Noise $r_1 r_2 r_3 r_4 r_5 r_6 r_7 = 10\ 01\ 010$. $\rho = 7$.

Map $(l_1 \ l_2 \ l_3) = (8 \ 3 \ 6)$. n = 10. $n = m + \rho$ always holds.

Bit $k_1 = 0$ is hidden at location 8.

Bit $k_2 = 0$ is hidden at location 3.

Bit $k_3 = 1$ is hidden at location 6.

Hidden signal $S(k_1k_2k_3, r_1r_2r_3r_4r_5r_6r_7) = 10\ 0\ 01\ 1\ 0\ 01$.

∃ <\0<</p>

Hiding Procedures Application & Testing Summarv 0000000 Creating a Quantum Random Scatter Map Input: n Variables: $n, j, r, t, l_1, l_2, ..., l_n$. $l_1 := 1$ $l_2 := 2$... $l_n := n$ j := nwhile $j \ge 2$ { A QRNG randomly chooses r in $\{1, 2, \dots, j\}$. $t := l_r$ $I_r := I_i$ $l_i := t$ i := i - 1} Output: $\pi = (I_1 \ I_2 \ \dots \ I_n)$

글 🕨 🖌 글 🕨

■ のへで

<ロト < 部ト < 注ト < 注ト</p>

Introduction 000000	Hiding Procedures	Application & Testing	Quantum Computing	Summary 000

Hide a Signal with Scatter Map π

Input: Signal $k_1 k_2 \ldots k_m$. Map $\pi = (l_1 l_2 \ldots l_n)$.

Alice's QRNG creates noise $r_1 r_2 \ldots r_{\rho}$. $\rho = n - m$.

Alice's map π sets $s_{l_1} = k_1 \ldots s_{l_m} = k_m$.

Per $\mathcal{S}(k_1,\ldots,k_m,\,r_1,r_2\ldots r_
ho)$, Alice fills in $\mathcal{S}=(s_1\ldots s_n)$.

Alice sends ${\mathcal S}$ to Bob.

Output: Bob's π extracts $k_1 \ldots k_m$ from S.

E SOR

A Random Hidden Nonce Makes π Reusable

- Alice and Bob share π .
- Each transmission uses a distinct hiding map σ .
- $\bullet\,$ Each time Alice's QRNG generates a new random nonce $\mathcal{N}.$
- Alice executes procedure 3 to derive σ from \mathcal{N} & π .
- Alice hides her signal with map σ .
- Alice hides nonce \mathcal{N} , using part of π .
- Bob uses part of π to extract nonce ${\mathcal N}$ from the noise.
- Bob executes procedure 3 to derive σ from \mathcal{N} & π .
- Bob uses σ to extracts Alice's signal from the noise.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Procedure 3: Randomly Generating σ Inputs: m, n. $\pi = (l_1 l_2 \dots l_n)$. κ, \mathcal{N}, j_0 . Ψ is SHA-512. $q_1 := l_1 \quad q_2 := l_2 \quad \dots \quad q_n := l_n \quad j := j_0.$ while $j \geq 2$ { $\kappa := \Psi(\kappa) \oplus \mathcal{R}(\kappa, 8)$ $\mathcal{N} := \Psi(\kappa \ \mathcal{N}) \oplus \mathcal{R}(\mathcal{N}, 8)$ $r := (\mathcal{N} \mod i) + 1$ $t := a_r$ $q_r := q_i$ $q_i := t$ i := i - 1} Output: $\sigma = (q_1 \ q_2 \ \dots \ q_m).$

Application & Testing

A B M A B M

< □ > < A > >

Summarv

Introduction 000000 Hiding Procedures

Application & Testing

Quantum Computing

Summary 000

Procedure 3 Explained at HICSS-58

Mathematical Analysis of a Single Transmission

- If an *m*-bit signal & ρ bits of noise satisfy axiom 1 (unbiased) & axiom 2 (independence), our math proofs show that a one-time transmission S from Alice to Bob approaches perfect secrecy as ρ increases.
- Perfect secrecy: the probability that a signal = k_1, k_2, \dots, k_m before Eve sees S remains unchanged after Eve sees S.
- If necessary, transform the signal so it satisfies axioms 1 & 2. Good keys automatically satisfy axioms 1 & 2.
- Our proofs rely on the standard normal curve's geometry. A binomial distribution approaches the standard normal curve as $n = m + \rho$ increases. (Central Limit Theorem.)

Introduction 000000	Hiding Procedures	Application & Testing ●0000	Quantum Computing o	Summary 000		
Hiding Public Keys in Noise						

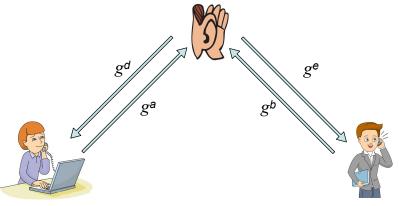
- A new key exchange can hide public keys in noise.
- Hinders MITM attack on a Public Key Exchange. Complexity is too high for Eve.
- Implemented with the 25519 elliptic curve.¹
- Mallory's complexity is 10³⁷ for a naked 25519 public key *P*. If no auxiliary information, Mallory has no halting criteria.
- Post-quantum. Reduces key sizes. A quantum computer can break naked 25519 public keys in $O(n^2)$ or $O(n^3)$ steps.

¹D.Bernstein.(2006) "Curve25519: new Diffie-Hellman speed records." *Public Key Cryptography*.LNCS 3958. Springer. 207–228.

Hiding Signals in Quantum Random Noise

Application & Testing

Hiding Hinders Mallory in the Middle Attacks



Eve and Alice share secret g^{ad} .

Eve and Bob share secret g^{be} .

A Hidden 25519 Elliptic Public Key P

Alice's hidden public key P=119179
 68 170 227 9 166 162 231 42 145 129 112 181 218 237 103 207 26 200 158 198 149 143 41 87 194 114 11
 214 24

 $\sigma(0) = 1993. \ \sigma(1) = 725. \ \sigma(2) = 405. \ \sigma(3) = 138. \ \sigma(4) = 1825. \ \sigma(5) = 1553. \ \sigma(6) = 213. \ \sigma(7) = 858.$

n = 2048. m = 255. All signal bits are blue, except first 8 bits are orange. Decimal 119 = 0111 0111

< ロ > < 同 > < 三 > < 三 >

Complexity of Finding a 25519 Elliptic Public Key P

 σ determines where ${\it P}$ is hidden.

A random nonce hidden in the noise unpredictably changes σ each time. (Entropy Invariance.)

Every possible σ is uniformly reachable from π , based on Diehard testing of Procedure 3.

Eve knowing where P was hidden in a prior hidden transmission reveals nothing about the location of the new P.

Since there are more than 255 0s and 1s of noise, every public key P in $\{0,1\}^{255}$ is possible.

Stops MITM attack: If Eve doesn't know π , Eve must test every possible *P*. That won't work.

< ロ > < 同 > < 三 > < 三 >

Statistical Testing of 25519 Public Keys & QR Noise

Statistical testing helps verify 25519 public keys (signal) and quantum random noise satisfy axioms 1 & 2.

```
do 80 million times {

a QRNG creates a 25519 private key \kappa.

compute public 25519 key \mathcal{P} from \kappa.

write \kappa to noise_control_file.txt

for each bit b_i in byte j of \mathcal{P}

write bit b_i in byte_j_bit_i.txt }
```

Diehard tests on $byte_j_bit_i.txt$ look for statistical anomalies in the *i*th bit of the *j*th byte of 25519 public keys.

Every file byte_j_bit_i.txt passed all 13 Diehard tests.

A B M A B M

Relevance to Quantum Computing

- N unsorted databased items. Classical algorithm $O(\frac{N}{2})$ steps.
- Grover's quantum algorithm takes $O(\sqrt{N})$ steps.
- Grover's algorithm requires a terminating condition.
- Scatter maps in $\mathcal{L}_{(m,n)}$ correspond to N database items.
- Eve has a terminating condition for scatter maps only if Eve has auxiliary information about σ after the scatter.
- Conjectured complexity is $O\left(\sqrt{\frac{n!}{(n-m)!}}\right)$ if Eve has a terminating condition.

•
$$\sqrt{\frac{8192!}{(8192-255)!}} > 10^{498}$$
 for $m = 255$ & $n = 8192$.

Research Summary

- A procedure hides a signal in quantum random noise.
- The locations of the signal bits randomly change each time.
- Security of the hidden signal can be made arbitrarily close to perfect secrecy.
- A new key exchange hides public keys in noise.
- Diehard tests verified that the probability distribution of 25519 public keys satisfy axioms 1 & 2.
- Our hiding procedure can be implemented with TCP/IP infrastructure and an inexpensive, off-the-shelf QRNG.
- If a quantum computer can solve NP hard lattice problems in $O(n^2)$ or $O(n^3)$, some of NIST's crypto is vulnerable.

Factorial Growth vs. Exponential Growth

```
Set r(n) = \frac{n!}{2^n}.

\log(r(n)) = \log(n!) - \log(2^n) = \sum_{k=2}^n \log(k) - n \log(2).
```

```
[iulia> factorial(4)
24
[julia> 2^4
16
[julia> function r(n)
       r = factorial(big(n)) / 2^{(big(n))}
       return r
       end
r (generic function with 1 method)
[julia> r(4)
1.5
[julia> factorial(4) / 2^4
1.5
[julia> r(100)
7.362140279596095642145348079335098603605904786041407178165622553205507320042596e+127
[julia> r(1000)
3.755333903791443599585571559542306426775894026657514769644025241443938219420678e+2266
```

э

Future Work & Research

Future work should explore an Internet of Things (IoT) implementation due to being low cost and post-quantum.

Based on Grover's algorithm, we anticipate Eve's quantum complexity is $O\left(\sqrt{\frac{n!}{(n-m)!}}\right)$ when *m* signal bits are hidden in n-m noise bits and signal and noise satisfy axioms 1 & 2.

Future research should explore variations of Grover's algorithm to further analyze the quantum complexity of our key exchange hidden in noise.

イロト イポト イラト イラト