Quantum Random, Self-Modifiable Computation

Michael Stephen Fiske

Aemea Institute

Logic Colloquium
13 August 2019

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Table of contents

@ What is Computation?

@® Main Results

© Ex-Machine Computation

@ Languages Computed by Q(x)

@ Research Questions

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
®0

Standard Model of Computation

The Turing Machine is the standard model.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
®0

Standard Model of Computation

The Turing Machine is the standard model.

The number of states stays fixed during the computation.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
®0

Standard Model of Computation

The Turing Machine is the standard model.
The number of states stays fixed during the computation.

The instructions stay fixed during the computation.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
®0

Standard Model of Computation

The Turing Machine is the standard model.
The number of states stays fixed during the computation.
The instructions stay fixed during the computation.

No randomness.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
oce

Ex-Machine Intuition

Ex-Machine is derived from the latin extra machinam.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
oce

Ex-Machine Intuition

Ex-Machine is derived from the latin extra machinam.

Add self-modification and randomness to the Turing Machine.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
oce

Ex-Machine Intuition

Ex-Machine is derived from the latin extra machinam.
Add self-modification and randomness to the Turing Machine.

Ex-machine instructions can evolve with self-modification.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
oce

Ex-Machine Intuition
Ex-Machine is derived from the latin extra machinam.
Add self-modification and randomness to the Turing Machine.
Ex-machine instructions can evolve with self-modification.
With randomness and self-modification, two instances of the

same initial ex-machine can execute and evolve to two distinct
ex-machines. (Non-autonomous dynamical system.)

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

What is Computation?
oce

Ex-Machine Intuition

Ex-Machine is derived from the latin extra machinam.

Add self-modification and randomness to the Turing Machine.
Ex-machine instructions can evolve with self-modification.
With randomness and self-modification, two instances of the
same initial ex-machine can execute and evolve to two distinct
ex-machines. (Non-autonomous dynamical system.)

An ex-machine can make a computational mistake on a first

instance of a problem and subsequently repair its program
before executing on a second instance of the same problem.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Main Results
€000

Preliminaries

From {a}*, define the set of languages £ = |J {L}.
Lcq{a}*

For f : N — {0, 1}, define language L = {a" : f(n) = 1}.

£= U A{L¢}

fe{0,1}N

Let 11 be the Lebesgue measure on {0, 1}, n({0,1}V) = 1.

 induces Lebesgue measure v on £ via f <> L¢. v(£) = 1.

Set Alphabet A = {#,0,1, N, Y, a}. # is the blank symbol.
Set States Q = {0, h,n,y, t, v, w, x,8} with halting state h

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Main Results
fo] Yolo)

Q(x) Specification: 15 Initial Instructions

(0,#,8,#,1)

(8, #,x,#,0)

(v, #,h,Y,0)

(n,#,h,N,0)

(x,#,x,0)

(x,a,t,0)

(x,0,v,#,0,(1Q| — 1,4, n, #,1))
(1, w, #,0,(|Q| — 1,#,y,#,1))
(t,0,w, a,0,(|Q — 1,#, n,#,1))
(t,1,w,a,0,(|QI — 1,4, y,#,1))
(v,#,n,#,1,(1Q| — 1,2,|Ql, 2,1))
(w,#,y,#,1,(1Ql - 1,2,]Q|, a,1))
(w,a,1Ql,3,1,(1Q - 1,a,|Ql, a,1))
(|Q] — 1, a, x, a,0)

(1QI = 1,4, x,#,0)

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Main Results
0000

Main Results

Q(x) computes Turing incomputable languages in £ with
probability (Lebesgue measure) 1.

After a finite number of computational steps, Q(x) uses a
finite amount of computing resources.

Consider an enumeration &,(i) = (9, T;) of all Turing
machines 91; and initial tapes T;, each containing a finite
number of non-blank symbols.

There exists an evolutionary path Q(x) = Q1 — Q> — ...

— Qpm, so at the mth stage Q,, correctly determines for
0 < i < m whether 901;'s execution on tape T; halts.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Main Results
oooe

Key Observations

p= % Our random instructions use no hidden tricks, e.g. p is
Turing incomputable. !

In practice, Q(x) will not find this evolutionary halting path,
even though it is possible. (Impossible for a Turing machine.)

Q(x)'s dynamical behavior circumvents the contradiction in
an information-theoretic proof of Turing's halting problem.?

The circumvention occurs because Q(x)’s meta instructions
increase the number of states and instructions in Q(x).

K. de Leeuw, E.F. Moore, C. Shannon, N. Shapiro. Computability by
Probabilistic Machines. Princeton University Press. 1956.
2C. Calude. Information and Randomness. Springer.-1994: pp.-184-185

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
©000000000000000

Standard Instructions S: (g, Tk, r, b, y)

Standard Instructions are Turing machine instructions.
Q@ ={0,1,...,n—1} C N is the set of states.
Alphabet A ={0,1,#} U {a1,...am}. # is the blank symbol.

| ‘Tk—4 ‘ Tk ‘Tk—z ‘Tk—l ‘ Tk ‘Tkﬂ ‘Tk+2 T+3

o

Tk+4‘ |

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
0®00000000000000

Standard Instructions S

Reading Ty on the tape in state g, write b on tape and move to
state r. Move tape head y € {—1,0,1}.

(g T, 1, b, -1)

| ‘Tk74‘ka3‘Tk72‘Tk7|‘ b | Ti1 | Tie2 | Ts3 | Ticra . |
(g, Tx, r, b, +1)
| ‘Tk74‘Tk*3‘Tk72‘Tk71‘ b | Txr1 | Tisa | Tiss | Ticra . |

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
00®0000000000000

Random Instructions R: (g, a, r,y)

When scanning alphabet symbol a and lying in state g,
random instruction (g, a, r, y) executes as follows.

Measure a quantum event that returns a random b € {0, 1}.

On the tape, replace alphabet symbol a with random bit b.
(Alphabet A always contains symbols {0, 1}.)

The ex-machine state moves to state r.

The ex-machine moves its tape head left if y = —1, right if
y = +1, or does not move if y = 0.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
000®000000000000

Quantum Random Axioms

Unbiased Trials: Consider bit sequence (x1 x2 x3 ...) in the
infinite product space {0,1}N. A single outcome x; generated

by quantum randomness is unbiased. The probabilities satisfy
P(X,‘ = 1) = P(X,' = 0) = %

Stochastic Independence: History has no effect on the next
quantum random measurement. Each outcome x; is
independent of the history. Expressed as conditional
probabilities, P(x; = a | x1 = b1, ..., xj—1 = bj_1) = %

for a=0, a=1 and for each (by, by,...,b;_1) € {0,1}7L.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
0000800000000000

A Theory for a Quantum Random Number Generator

Protocol for a QRNG Based on Value Indefiniteness?

1 Bit

Spin-1 Source |——»{ S. Splitter K—C{ S Splitter
<l

0 Bit

3Abbott, Calude, Conder, Svozil. Strong Kochen-Specker theorem and
incomputability of quantum randomness. Physical Review A 86, 062109= 2012.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation

00000@0000000000

A Physical Realization of a QRNG

Measurement Setup and S, Data *

@) b) 1350
@ © ® x=0
1200
* g
] ; 1050
m A %00
5z . 750
» £ g &0
s 2 450

Relioltage au RefVultugel, 5.

*Kulikov et al. Realization of a QRNG certified with the Kochen-Specker
Theorem. 2017. arXiv:1709.03687v1

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
000000@000000000

Meta Instructions M

Meta instructions can add new states.

Meta instructions can add new instructions

Meta instructions can replace instructions.

Meta instructions M are a subset of {(q,a,r,a,y,J): g€ Q
and re QU {|Q|} and a,a € A and instruction

JeSUR}.

J is a standard or random instruction

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Execution of Meta Instruction (q, a, r, o, y, J)

ZI=SURUM.

Quintuple (q, a, r, o, y) executes as a standard instruction
with one caveat:

State g may be expressed as |Q| — ¢; and state r may be
expressed as |Q| or |Q| — ¢, where 0 < ¢1, 2 < |Q|. When
(g,a,r,a,y) is executed, if g is expressed as |Q| — ¢y, the
value of g is instantiated to the current value of |Q| minus c.

If state r is expressed as |Q| or |Q| — ¢, the value of r
instantiates to the current value of |Q| or |Q| — 2,
respectively.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
00000000e0000000

Execution of Meta Instruction (q, a, r, o, y, J)

Unique state, scanning condition: for any two distinct
instructions chosen from Z at least one of the first two
coordinates must differ.

Next, instruction J modifies Z, where instruction J has one of
the two forms: J = (q,a,r,a,y) or J=(q,a,r,y).

For both forms, if Z U {J} still satisfies the unique state,
scanning symbol condition, then Z is updated to Z U {J}.

Otherwise, there is an instruction / in Z whose first two
coordinates g, a are equal to instruction J's first two
coordinates. In this case, instruction J replaces instruction /
in Z. That is, Z is updated to ZU {J} — {/}

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
000000000e000000

Example that Executes a Meta Instruction

Consider meta instruction (g, a1, |Q| — 1, a1, y1,J), where
J = (’Q‘ - 17327 ‘Q’7a27y2)'

After standard instruction (q, a1, |Q| — 1, a1, y1) executes, this

meta instruction adds a new state |Q| to the states @ and
adds instruction J, instantiated with the current value of |Q)|.

Set states Q = {0,1,2,3,4,5,6,7}. Alphabet A= {#,0,1}.

An initial configuration is shown below.

State Tape
5 H##11 01H##

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
0000000000e00000

Example that Executes a Meta Instruction
Meta instruction (5,0, |Q| —1,1,0, J) executes with values
g=>5a=0,a1=1y=0,a=1 a=%#, and y» = —1.
Instruction J = (|Q| — 1, 1,|Q], #, —1)

Since |Q| = 8, instruction (5,0,7,1,0) executes.
J=(7,1,8,#,—1) is added as a new standard instruction.

The instantiation of |Q| = 8 in J adds state 8. The states are
updated to Q ={0,1,2,3,4,5,6,7,8}.

The new ex-machine configuration is shown below.

State Tape

7 HH11 1144
Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
00000000000e0000

Example that Executes a Meta Instruction

State Tape
7 HH#11 11H##

Now, the ex-machine is scanning a 1 and lying in state 7, so
the standard instruction J = (7, 1,8, #, —1) executes.

Note J was just added to the instructions.

After J executes, the new configuration is shown below.

State Tape
8 ##1 1#14#

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
000000000000e000

Simple Meta Instructions

A simple meta instruction has syntax, where 0 < ¢1, 2 < |Q|:
(qaay‘Q’—CLOGY) or (q737’0‘7047)/)
(|Q’ —C1,a, r,a,y)
(|Q’_Cl7av|Q|_C27aay) or (|Q|—C1,a7|Q’,OZ,y)-
Expressions |Q| — c1, |Q| — 2 and | Q] are instantiated to a
state based on the current value of |Q| when the meta
instruction executes.

Q(x) self-reflects with the symbols |Q| — 1 and |Q)].

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
0000000000000e00

Finite Initial Conditions

A finitely bounded tape means the tape has a finite number of
non-blank symbols.

An ex-machine has finite initial conditions if the following 4
conditions are satisfied before the ex-machine starts executing.

1. The number of states | Q| is finite.
2. The number of alphabet symbols |A| is finite.
3. The number of machine instructions |Z| is finite.

4. The tape is finitely bounded.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Ex-Machine Computation
00000000000000e0

Evolving an Ex-machine

To, T1, ... T;_1 are finitely bounded tapes. Ex-machine Xj
has finite initial conditions.

Xo starts executing with tape Ty and evolves to ex-machine
X1 with tape S;.

Next, X starts executing with tape T; and evolves to X»
with tape S,. This means that when ex-machine X1 starts
executing on tape Ti, its instructions are preserved after the
halt with tape S;.

The ex-machine evolution continues until X;_; starts
executing with tape T;_1 and evolves to ex-machine X; with
tape S;.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Evolutionary Path, Ancestors and Descendants

One says that ex-machine Xy with finitely bounded tapes Ty,
T1, To ... T;_1 evolves to ex-machine X; after i halts.

When ex-machine Xg evolves to X; and subsequently X;
evolves to X5 and so on up to ex-machine X,, then
ex-machine X; is called an ancestor of ex-machine X;
whenever 0 <7 <j < n.

Similarly, ex-machine X; is called a descendant of ex-machine
X; whenever 0 </ <j<n.

The sequence of ex-machines Xg — X1 — ... = X, ... is
called an evolutionary path.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
©0000000

Languages that (x) Evolves to Compute

Recall that £ = |J {L}. Alphabet A= {#,0,1,N,Y, a}. The
Lc{a}*
initial states are @ = {0, h,n,y, t,v,w, x,8} with halting state h

Let X be an ex-machine that is a descendant of Q(x). The
language L in £ that X computes is defined as follows.

A valid initial tape has the form # #a"#. The valid initial
tape # ## represents the empty string.

After machine X starts executing with initial tape # #a"#,
string a” is in X's language if X halts with tape #a"# Y#.

a” is not in X's language if X halts with tape #a"# N#.

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
0®000000

Q(x) Specification

(0,#,8,#,1)

(8,#,x,#,0)

(v,#,h,Y,0)

(n,#, h,N,0)

(X7 #7X7 0)

(X7 27 t7 0)
(X,O, v, #70» (|Q| - 17#7 n, #7 1))
(X7 17 w, #70’ (‘Q| - 17#,}’, #’ 1))
(t7 07 w, a, 07 (lQ‘ - 17 #’ n:#: 1))
(t7 17 w, a, 07 (lQ‘ - 17 #7}/7 #7 1))
(Vz#vna#’lqul - 1737 ‘Q|7a:1))
(Wy#aya#a 19(|Q| - 1737 ‘Qlaayl))
(anv |Q" a, 17 (|Q| - 1: a, |Q‘7av 1))
(1QI - 1,a,x,2,0)
(|Q| - 17#7X7#70)

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
00®00000

Q(x) Starts with Tape # #aaaa## and State 0

9
b
=
m

TAPE
aaaa###
aaaaftit#
laaatt#+#
aaaatt##
aaaft##
aaa##HH#
laa#t#+#
aaa#t#H#
aa#t#4f
aatt##
##aa Oa##+#
##faa aa##f
#4taaa a##+4f
H#4taaa a#t#+4f
H#ftaaa 1#444#
##taaa a##4t
#4taaaa ##4#
#4taaaa ##4#
##aaaa OH##
##taaaa ###
H##taaaatt ##
F##aaaa# N#

##a
##taa
#7taa

©o o
TICXXPETXEETXGE X OF X

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

INSTRUCTION EXECUTED

(0, #, 8, #, 1)

(IQl —1,a,x,a,0)

(x,a,t,1gr,0)

(t,1,w,2,0,(1Q] —1,#,y, #,1))
(w 73,|Q| a,1,(1Q1 —1,a,|Q|,a,1))
(IQl —1,a,x,2,0)

(x;a,t, lqrvo)

t,1,w,2,0,(1Q] —1,#,y, #,1))
w,a,[Ql,a,1,(1Q —1,a,Ql,a1))
|Q| — 1, a,x,a,0)

x,a,t,O rvo)

60, w,a,0,(1Q| — 1, #, n, #,1))
w, ,\Ql 2.1,(1Q1 - 1,2,1Ql,2,1))
—1,a,x,a,0)

t, 1q,,0)
w,2,0,(1Q — 1, #,y, #,1))
w,a,|Q|,a,1,(|Q| —1,a,]Ql,a,1))
Q] = 1,%,x, #,0)

qu,O)

#,0,(|Q] — 1,%, n, #,1))
#1,(1Q1 — 1,2,1Q|,a,1))
N, 0

Q|
a,
1,

X,
v

(
(w
(
(
(
(w
(I
(x
(£
(
(
(x,
(
(
(

#, %,
0, v,
a#anv
#,h

NEW INSTRUCTION
(8,a,x,4a,0)

(8,4, y, #,1)
(8,a,9,a,1)
(9,a,x,a,0)

(9, #,y, #,1)
(9, a,10,a,1)
(10, a, x, a, 0)

(10, #, n, #,1)
(10, a,11, a,1)
(11, a, x, a, 0)

(11,4, y,#,1)
(11, 8,12, a,1)
(12, #, x, #,0)

(12, %, n, #,1)
(12,a,13,a,1)

Languages Computed by Q(x)
000®0000

Q(x) Evolved to (11010 x)
0,#,8,#,1) (v,#,h,Y,0) (n,#, h, N, 0)

X7 #7 X7 0)
x,a,t,0)

7V=#707(|Q| - 17#7”7#71))
X717W7#70’(‘Q| - 17#7}/7#’1))
t, 01 ,a, 07('0‘ - 11#1 n,#,l))
t,1 73707(|Q‘717#7y7#71))

x,0

(

(

(

(

(

(w

(t,1,w

(vi#,n,#,1,(1Q| — 1,2,|Q[, a,1))
(W7#7y7#7 17(|Q| - 1737 ‘lea71))
(W7av |Q"‘97 17(|Q| - 17'37 |Q‘7‘971))
(
(
(
(
(
(
(

K y7 #’ 1) (87 a? 97 a7 1)

b y7 #7 1) (97 a7 107 a7 1)
0,#,n,#,1) (10,4a,11,a,1)
1,#,y,#,1) (11,a,12,a,1)

127#7”7#71) (12737 13,3,1)

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
00008000

Q(x) Evolving to Compute Some Ly
Each infinite downard path in the infinite binary tree corresponds
to a unique language L, where string a" lies in L¢ if and only if
the n + 1th branch of the downward path is a 1.

Figure: Infinite Binary Tree

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
00000800

Q(x) Evolving to Compute Some Ly

An execution of Q(x) on initial tape # #a"# executes a
random instruction n+ 1 times, creating a finite downward
path of length n+ 1. After this execution, the descendant is
Q(f(0)f(1)...f(n) x), where f(i) is the random bit
measured in the / 4+ 1th execution of a random instruction.

LEMMA: Assume i < n. If f(i) =1, then Q(f(0)f(1)...f(n)
x) on initial tape # #a'# halts with tape #a'# Y#. If
f(i) = 0, then Q(f(0)f(1)...f(n) x) halts with #a'# N#.
THEOREM: For functions f : N — {0, 1}, the probability that
language L¢ is Turing incomputable has measure 1 in (v, £).

COROLLARY: Q(x) evolves to compute a Turing
Incomputable language Lf with probability measure 1 in
(v, £).

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
00000080

Q(x) Evolving to Compute L,

Universal Turing machine / enumeration theorem, there is a
Turing computable enumeration £ : N — { all Turing
machines M} x { Each of M's states as an initial state }

This enumeration uses the blank-tape halting problem.
Set alphabet A = {#,0,1,a,A,B,M,N,S, X, Y}.

Let Mg be the Turing machine that computes
E; N — A* x N, where tape # #a"# represents the
natural number n in the domain of &,.

N in the range of &, holds the initial state of machine £,(n).

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Languages Computed by Q(x)
0000000@

Q(x) Evolving to Compute Halting Language Lj_

REMARK: For each n € N, with blank initial tape and initial
state £,(n) (2nd coordinate), then Turing machine &,(n) (first
coordinate) either halts or does not halt.

Define halting function hg, : N — {0,1}, where he,(n) = 1 if
Turing machine £,(n) halts with blank initial tape and initial
state £,(n). hg,(n) = 0 if Turing machine &£,(n) does not halt.

Define halting language tha ={a": hg,(n) =1}.
THEOREM: The evolutionary path Q(hg,(0) x) — Q(hg,(0)

he,(1) x) — ... Q(he,(0) he,(1) ... he,(m) x) ...
computes halting language Lp,,

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Research Questions
°0

Halting Complexity Questions

Can we find or define a measure of halting complexity to
appropriately ask the next question?

(The Shannon complexity |Q||A| is not adequate.)

Can this finite halting complexity of a Turing machine H be
characterized as follows? There exists a threshold halting
complexity 8(M) so that if M's halting complexity is greater
than 6(M), then H cannot determine M's halting behavior.

(One approach is to assume an initially blank tape to assure
that there is not complexity hidden in the different initial
tapes.)

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

Research Questions
oe

Self-Modification Questions

For a fixed Turing machine M, do there exist ex-machine
self-modification procedures in some ex-machine X that start
with a finite number of standard, random and meta
instructions that can evolve to determine M's halting behavior
with probability measure 17

Does there exist a sufficiently high halting complexity for M,
where these self-modification procedures fail?

Quantum Random, Self-Modifiable Computation Michael Stephen Fiske

	What is Computation?
	Main Results
	Ex-Machine Computation
	Languages Computed by Q(x)
	Research Questions

