Entropy and Chaos in non-autonomous and autonomous
systems

The previous ltwo sections tell us that unless we impose strong restrictions
on the functions f; in a non-autonomous system, then we can not expect simple
behavior of the orbits such as periodic orbits or fixed points. Consequently, in this
section we explore methods of measuring how disordered the orbits of the dynamical
system are. Specifically, the idea is that the rate at which neafby orbits spread away

from each other is a measure of complexity.

One may wonder about the utility of this notion for neural computation. Topo-
logical entropy (a mathematical notion that measures the spreading out of orbits)
measures how fast the dynamical system explores the whole space within an € mesh.
Since all the training algorithms are essentially search routines, entropy is one way
to measure the quality of the search. Further, as described in section V, a neural .

net algorithm uses the exponential spreading of orbits to find a global minima.

The notion of orbits spreading out is introduced with a simple example. For
a fixed distance of .01 centimeters and in a fixed area of space, the problem is to
determine the maximum number of points that can be placed in this area so that no

two points are closer than .01 centimeters apart. If we think of our whole space as
45
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the fixed rectangle, then 9 points can be placed so that all points are at a distance

of at least .01 cm apart.

.01 cm

There is another way to think about points being placed in a region so they
are not too close to each other. Suppose the resolution of a magnifying glass is 0.01
cm. If two points are less than 0.01 cm apart, then they cannot be distinguished.

They appear to be one blob.

To extend this idea to a function f, we determine the number of points that
can be packed in a space so that any two of them separate at least once by at least
.01 cm. after no more than, say, 5 iterations of f. Notice that the emphasis is on
separating by .01 cm e;,t least once; e.g. it is acceptable if two points z,y are within
.01 cm on the first 4 iterates as long as they separate the required amount by the

fifth iterate.

A particular instance of two points separating by .01 cm. in at most 5 iterates
is the following: The distance between z,y is less than .00001 cm. The distance
between f(z), f(y) is less than .00001 cm. The distance between fo f(z), fo f(y)
is less than .00001 cm. The distance between f3(z), f3(y) is less than .00001
cm. The distance between f*(z), f4(y) is less than .00001 cm. And the distance
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between f°(z), f3(y) is .01 cm.
To illustrate, consider the tent map: T : [0,1] — [0,1] and T(z) = 2z if
z €[0,0.5] and T(z) =2 -2z if z € (0.5,1].

1

0.5 |

0.5 1

Fix the distance to be 0.5, and ask how many points can we pack into [0, 1] so that
any two points separate by a distance of at least 0.5 in no more than 0 iterates.
Clearly, the maximum number is at least three because the set {0.0,0.5,1.0} satisfies
the condition. On the other hand, any set with four points has two of them less
than or equal to 0.5 units apart; this violates the separability condition.

The maximum number for 0, and 1 iterates is five points. This can be seen
with the set {0, %, %, %, 1}. For example, the distance between T(0) and T(%) is %,
so they separate. Since there are so many points, the following diagram makes it

easier to see that this set satisfies the condition:
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1=0.

The answer for 0,1, or 2 iterates is given by the set {0, %, %, %, %, -g—, %, 1}; it

has a maximum number of elements that separate by at least 0.5 units in 0,1, or

2 iterates. This assertion is clear as one sees by comparing any two points in the

diagram:
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Notice for 0 iterates that the maximum size is 3 ~ 2(0+1); for 1 iterate the
maximum size is 5 & 2(1+1): and for 2 iterates the maximum size is 8 = 2(2+1),
By repeating this argument, we find that the number of elements in a maximum
set increases approximately by a multiple of 2 as the number of allowed iterates .
of T is increased. This makes sense since the absolute value of the slope of T" is 2
everywhere except at % Consequently, the local effect of the map 7" is to expand
the distance between two points by a factor of 2.

The goal is to measure how the number of elements in a maximum-set increases

in the long run i.e. as n, the number of iterates, goes to co. Even for a simple map
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like the tent map, this number grows exponentially as a function of n. To end
up with a finite limit, the log of the cardinality of the maximum set is divided by
the number of iterates. This motivates the following mathematical definition that

originates in [BOWEN].

DEFINITION 4.16. Suppose (X,d) is a compact metric space. Suppose fi: X — X
is a sequence of continuous functions. We say S C X is (0,n,¢,{fi}) separated by
the sequence of functions {fi} if for any z,y € S where x # y, there exists some
7, dependent on x dnd y, with 0 < j < n so that d(fj o fj—10,..., f20 fi(z), fj o
fi—10,...,f2 0 fi(y)) > €. Notice that if f; = f for all i, then this condition
reduces to the standard definition of an epsilon separated set. Set rgep(0,n,¢€, fi) =
maz{|S| : S is (n,€) separated by f;}. Set hgep(e, fi) = liﬂgpw and

define hsep(fi) e lir% hsep(ea fi)-

This means that hgep( fi) is a crude measure of the separation of log 4¢p(0, 1, €, fi).
The next definition, of spanning sets, is a notion that is the dual of separating set.
The spanning set notion measures the minimal number of points needed so that
during the first n iterates each point of the space is within € of one of the iterates
of a point in the spanning set. As we soon show, the use of spanning set is another
way of computing fhe entropy of a non-autonomous system. It is convenient to have -

-

two different ways of computing the entropy when proving theorems about entropy.

DEFINITION 4.17. A set S, where S C K, (0,n,¢,{fi}) spans K if for any z € K,

there exists s € S such that d(fj o---o fi(z),fjo- -0 fi(s)) < € for all j, where
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0 <Jj <n. Set rspan(0,n,¢, fi, K) = min{|S|: S (0,n,¢,{fi}) spans K by f;}. Set

hspan(€7 fia K) = lim Suplog Topan (s,n,e,f,-,K) and set
n—00

hspan(fi, K) — ll_rf(l) hspan(f, fi,K)-

If we omit K we are assuming K equals the whole space X. We establish
that there are three different yet equivalent ways to compute the entropy. (This is
known for autonomous systems, [BOWEN].) The following lemma establishes the

equivalence of separating set entropy and spanning set entropy.

LEMMA 4.3. hsep(fi) = hspan(fi)

Proof: Let Egep(n,€) be a maximal (0,n,€, {f;}) separated set for X and let
z € X. There is some y € Esep(n,€) so that d(fjo--;0 fi(z),fjo-- 0 fi(y)) <e
for all 0 < j < n. This assertion follows because if z ¢ Esep(n,€), then the set
Esep(n,e)U{z} is a (0,n,€,{f;}) separated set for X and thus Esep(n,€) would not
be maximal. This conclusion contradicts that Esep(n,€) is a maximal set. Hence,
Esep(n,€) also (0,n,€,{f1, f2,...}) spans X with respect to f;. Consequently, we

have that

(4-1) Tsep(oa"a € ft) == |Esep(na 5)' 2 rspan(ov n, e, ft)

-

Let Esep(n,2¢) be a maximal (n,2¢) separated set for X, and let Espgn(n,€)
be a minimal (n,€) spanning set for X. Using the fact that the set Egpgn(n,e)
(0,n,¢,{fi}) spans all of X we define a map T : Egep(n,2¢) — Egpan(n, €) in the

following manner. Let z € Eycp(n,2¢). By the definition of Espan(n,€), there is



51

some y € Egpan(n,€) so that d(fjo--- o fi(z),fjo -0 fi(y)) < € for any j with
0 <j <n. So define y = T'(z).

We claim T'is 1 to 1. Suppose z = T'(z;) = T (z2) for some z1, 22 € Esep(n, 2¢€).
By the triangle inequality, for any j with 0 < j < n, we have that
d(fjo---o fi(z1), fjo---o0 fi(e2)) < d(fjo';'ofl(wl),fjo -0 fi(2))+d(fjo---0
f1(2), fjo- -0 fi(z2)) < 2¢ by the definition of z = T'(z1) = T'(z2). Since Egep(n, 2€)
is a (0,n,2¢,{fi}) separated set, the previous inequality implies that z; = z5.

Since T'is 1to 1, rsep(0, 7, 2¢, fi) = |Esep(n, 2€)| < |Espan(n, €)| = rspan(0, 1, €, f;).

Hence, for any € > 0

(4.2) Tsep(0,7,2€, f;) < ropan(0,m,¢, i) < rsep(0, 1, €, fi).
Since hspan(€, fi) = lim supIOg ”paz(o’n’c’f"), we have that
n—00
hsep(e, fi) = lim supbgﬂ’%ﬁl, and we obtain
n—o00
(4.3) hsep(2€, f:) ot hspan(‘f, fz) < hsep(f, ft)

If lin% hsep(€, fi) is finite, then elementary theorems about limits applied to equation
€~
4.3 as € — 0 finishes the proof; otherwise, if hsep(2e, f;) is infinite for small enough

€ values, equation 4.3 implies that hsep({fi}) = oo, and Bspan({fi}) =00. B

Our next goal is to introduce a way to compute the entropy of a continuous
function even for spaces that may not have a metric. We only assume that X is a
compact topological space. When X is a metric space, then the topological measure
of entropy agrees with the one defined in terms of € spanning or € separating sets.

Presenting entropy in terms of open covers originated from [ADLER].
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DEFINITION 4.18. Suppose X is compact. For any open cover 4 of X, let N()
denote the number of sets in a subcover of minimal cardinality. (A subcover is
minimal if no subcover contains fewer members.) Define the entropy of U to be

H(y) = log N(y).

DEFINITION 4.19. For any two open covers i, 3 of X, define uV 3 ={ANB: A€

U, B € B}. Note that 4V f3 is also an open cover of X.

The following are some properties of open covers proved in [ADLER].

PROPERTY 4.1. N(4V 3) < N(U)N(B) and H(uV B) < H(u) + H(p).
PROPERTY 4.2. If ¢ : X — X is continuous, then ¢~ (UV B) = ¢~ 1 () V ¢71(B).

PROPERTY 4.3. If ¢ ‘is continuous, the minimal number of elements in an open

cover N(41), is always greater than or equal to the number of elements in the inverse

image of an open cover; i.e. N(81) > N(¢~1(u)).
Note: when ¢ is onto, then N(4) = N(¢~*(1)).

The next definition is analogous to Definition 13. The elements of the open

cover roughly correspond to € balls, except the open sets do not all have the same

diameter.
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DEFINITION 4.20. Suppose f; : X — X is a sequence of continuous functions.

Define heoo(fiy i) =

limsupH[qul_l(u) V(fz0 fi) 1 (u)V n V (fa=10 fa—2...f2 ofl)—l(u)].

DEFINITION 4.21. Define the open cover entropy of (X, {fi}) to be

heoo(fi) = sup{h(fi,u) : 4 is an open cover of X}. o

REMARK 4.8. Notation: we set

N(4, fi,n) = NV T8V (f20 f1) 1) V-V (faz1 0 faz ... f2 0 f1)"1(1)],

H(Y, fi,n) = HUV 7YV (f20 f) X @) V-V (fac10 faz ... f20 fi) 1)

We now show the open cover entropy is equal to the spanning set entropy. This
shows that the notions of open cover entropy, spanning set entropy, and separating

set entropy are equivalent for non-autonomous systems.

LEMMA 4.4. For any € > 0 and any n we can find an open cover 4 of X so that

"'span(oa n, ¢, fl) < N(U, fis n)

Proof: Fix n as a natural number. Fix € > 0. Since X is compact, the functions
fi,fao fi,..., fa=10--- 0 fi are uniformly continuous on X, and since there are a

finite number of functions, we can find an open cover i of X so that the following

n — 1 conditions hold:
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(4.1) U € U= diam(U) < ¢,
(4.2) U € f1(4) = diam(U) < e,
(4.3) U€ (fao...f1)  (4) = diam(U) < e.

Let V be an element of the open cover 4V fi1(4) V (fao fi) () V-V
(fa=10fa=2... f20 f1)~}(4). Since V = U1 N fT 1 (U2)N(f2 ofl)"l(Ug)r)- «N(fa=10
fa—2...fa0 fi)"Y(Uy) and Uy € 4, this implies that diam(V) < diam(U;) < e.

Hence, there is an € V so that

(4.4) V C B(z,e).

Let Vi,..., Vi be a minimal subcover of 4V f7 () V (fa0 f1) M) V-V (fa1 0
fa—2...f2 0 fi)71(4).- By equation 4.4, there exists a set {zi,...,Zn,} so that

Vi C B(zj,€) and z; € V;.
We claim our final step shows that the set {z1,...,2m} (0,n,¢,{fi}) spans X.

Let y € X. Since V1,..., Vi cover X. W.L.O.G., suppose y € V1 = Vg1 N
Vi) N (f2o f1) 7 (Va) 0o (fam1 0 faz ... f20 f1) 7} (Vin—1)1)- Because V4 C
B(z1,€) and z; € V; we conclude that d(z;1,y) < €. Further, z1,y € Vj C fl—l(Vn)
implies that fi(z1), fi(y) € Vi1. By the second of the n conditions diam(V}1) < e,

so d(fi(z1), fi(y)) < e. Similarly, for j with 1 < j < n, we have that




55

ij'-'0f1(x),fj0---0f1(y) = Vil, SO0 d(fjoofl(x)vfjoofl(y)) =€ Hencea
dn,f;(21,y) < €. Thus, rspan(0,7,€, f;) < N(4, fi,n). W

The following Corollary enables us to show that the spanning set entropy is

less than or equal to the open cover entropy.

COROLLARY 4.1. For any € > 0, there exists an open cover 4 of X so that

l - 3
limsup og(Tspan(O,n,e, fl)) S limsupH(u’ fhn) 2
n—00 n n—00 n

Proof: Notice that log(z) is strictly increasing. The rest of the proof follows

easily from the previous lemma. B

COROLLARY 4.2. The spanning set entropy is less than or equal to the open cover

entropy; i.e. Bepan(fi) < hcover(fi)-

Proof: This is an immediate conclusion from the definitions of spanning set

entropy and open cover entropy and Corollary 4.1. W

We have shown that the spanning set entropy is less than or equal to the open
cover entropy. Next we show that the spanning set entropy is greater than or equal

to the open cover entropy.

LEMMA 4.5. Fiz a natural number, n. For any open cover i, there exists € > 0 so

that "'span(oa n, e, ft) 2 N(ﬂ, f,',n).

Proof: Set m = N(4, f;,n). Let V,..., Vin be a minimal subcover of
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AV NV (f20 1) W)V -V (fa10 facz. .. f20 f1)71(4). Since Wi,...,Vp isa
minimal subcover of X, for each V; there exists ¢; > 0 and z; € V; so that B (&,2) C
Vi and B(€;, ;) N V; = @ when j #i. Set € = %min{el,. ..y€ém}. Then the points
{z1,...,2m} are an (0,n,2¢,{f;}) separated set. Hence, rsep(0,n,2¢, fi) > m =
‘N(4, fi,n). By Lemma 4.3, 75pan (0,7, €, fi) > 75ep(0, m, 2¢, fi). Hence, we found an
€ > 0 so that rgpen(0,n,€, fi) > N(4, fi,n) B

COROLLARY 4.3. For any open cover i of X, there exists € > 0 so that

fs Suplog(rspan(o,n, €, fi)) > lim SupH(u’ fis n)
n—00 n n—00 n

Proof: Again, the proof is that log(z) is strictly increasing. Now, z;,pply Lemma

4.5. 1

COROLLARY 4.4. For a metric space, the separating set, spanning set, and open

cover entropies are equivalent, i.e. hsep(fi) = hspan(fi) = hcover(fi)

Proof: The first equality is Lemma 4.3. The second equality follows from

Corollary 4.2 and Corollary 4.3. B

The previous Corollary suggests that we ought to use the same notation for the .
three different ways of defining entropy; from now on, we write h(f;) to represent
topological entropy and drop all subscripts.

Now we turn our attention to an extension of Bowen’s results that the topolog-
ical entropy of the non-autonomous system (X, {f1,..., fr}) with peried r is equal

to the topological entropy of {fi,..., fr} restricted to the non-wandering points.
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Recall the definition of non-wandering point in Definition 1.7. Notice that this def-
inition is logically equivalent to: For any neighborhood U of p there exists k£ > 0
such that fro---0 fz0 foo f1(U)NU # 0.

The next Theorem states that the entropy of a non-autonomous dynamical
“system with period 2, restricted to the non-wandering set is the same as the entropy
of the dynamical system on the whole space. While reading the proof, notice that
none of the steps rely on the fact that the integer m is a multiple of 2; these steps
only depend on the fact that m is finite. Consequently, for a non-autonomous
dynamical system with period p, (X, {91,92,..,9p,91,92,---,9p,---}), We can Nset

m = kp, and make precisely the same arguments as the proof for period 2. In the

interests of clarity, we show the proof for period 2, rather than for pe}iod .

THEOREM 4.13. The topological entropy of {f,g} on X is equal to the topological

entropy of {f,g} on Q.

Proof: Let € > 0 and fix m where m is even and m > 1. Let Espan(0,m,€,9)
be a minimal (0,m, €, {f,g}) spanning set. Set U = {z € X : d(o,m)(2,y) < € for

some y € Fgpan(0,m,¢,Q)}. Notice that U is an open set because

(4.5) d(O,m)(Za y) < d(O,m)(z, z) + d(O,m)(za y)

Choose 6 > 0 so that d(z,z) < 6 implies that d(g n,(z,2) < € — d(o,m)(z,y)-

Hence, the inequality d(g ,,)(2,y) < € implies that B(z,6) C U.

Let X\U denote the set theoretic complement of U in X. Then X \¥ is compact

because X is compact by assumption. The next Remark essentially tells us that
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X\U is a subset of the wandering points (the set theoretic complement of the non-
wandering points). However, to make the proof more readable we present the proof

of this Remark at the end of the proof of the Theorem.

REMARK 4.9. There ezists some B > 0 so that § < € and for anyy € X\U we have

l9, F1*(B(y,8)) N B(y, 8) = 0 for all k > 1.

The key idea here is to split the whole space X into two pieces, X\U, and Q,
the non-wandering set. Then we show that the size of the spanning sets of X\U

are bounded above by a polynomial, so X\U contributes nothing to the entropy.

Let S = Espan(0,m, B, X\U) be a minimal (0,m, B,{f,g}) spanning set, for
X\U, and let Espan(0,m, e, 2) be a minimal (0, m, e, {f,9}) spanning set for 0.
Hence, |S| = rspan(0,m, B, {f,9}, X\U). Set Gspan(m) = Egpan(0,m,€,Q) U
Espan(0,m, B, X\U). Notice that Gspan(m) is a (0,m, ¢,{f,g}) spanning set for X.
Hence, |Gspan(m)| > rspan(0,m, €, {f,9},X). Keep in mind, that our long term

goal is to find an upper bound for rsep(0,m,2¢, X, {f, g}).

Let | € N. Define & : X — Gspan(m)! where ®;(z) = (yo,-..,y1), and
we choose y; in the following way. If [g, fl™(z) € U, then choose a ¥i so that -
Ui € Bopan(0,m, ¢,2) and d (19, /1™ (2), ) < e. Otherwise, [g, fl™(z) € X\U,
s0 choose a y; so that y; € Eypan(0,m, 8, X\U) and d(o,m)(l95 fI™(z), yi) < B. Since
Espan(0,m,€,9) is an (0,m, e, {f,9}) spanning set for U and Espan(0,m, 3, X \U)
is an (0,m, 3,{f,g}) spanning set for X\U, it is possible to make these choices of

yi to define ®;.



