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This next remark allows us to make a sharp enough upper bound when we

count the number of elements in Espan(0,m, g, X\U).

REMARK 4.10. Suppose (yo,...,yi—1) = ®;(z) for some = € X. Then a point

Yi € Espan(0,m, 'g,X\U) can not be repeated in this | tuple.

Proof: Suppose y; = yx = z and j < k. Then we have d(g )([g, f'™(z),z) <
7 and [g, f™(z) € X\U. Thus, d(om)([g, f1*"(z),2) < £ and [g, flF™(z) €
X\U. This implies that d([g, f'™(z),2) < £ and d([g, f]*™(z),2) < &. Hence,
d(lg, 1*=™([g, f'™(2)), lg, f1™(z)) = d(lg, /I¥™ (<), g, fi™(2)) < B. By defini-
tion of A, this contradicts that [g, f™(z) € X\U. W g
End of Remark 4.10.

Now choose n € N so that n > m rspan(vO,hz,ﬂ, {f,9},X\U). Suppose
Esep(0,2¢,{f,9}, X) is a maximal (0,n,2¢) separated set. For such an n, let [
be the positive integer with (I — 1)m < n < Im. The next Remark allows us to
convert the problem of finding an upper bound for Ejep(0,n,2¢, X), by finding an

upper bound for ®;(Esep(0,n,2¢, X)).

REMARK 4.11. The map ®; is 1 to 1 on Esep(0,n,2¢, X).

Proof: Suppose ®;(c) = ®1(z) = (v0,...,y1_1) Where 2,z € Eqep(0,n, 2¢, X)
For 0 < j <m and 0 < i < [, we have
d(lg, fI"™* (), lg, S1"™*9(2)) = d(lg, ¥ ([g, 1™ (@), [9, £ (9, F1™(2))). Sincem is
amultipleof 2, d([g, f1([g, f]"™(2)), [9, f1([g, F1™(2))) < d(lg, FV([g, ™ (), y:)+



60

d(yi, [g, 117 ([g, £1™(2)))
e d(o’m)([g,f]im(x),y;) + d(0,m) (i, [9, f'™(2)) < €+ € because of the definition of

®; and y;.

The integer [ is chosen so that {m > n. Since the above inequality holds for all
¢ and j, then d(g »)(z,2) < 2¢. Since the set FEsep(0,n,2¢,X) is (0,7, 2¢) separated,
thenz =z. W

End of Remark 4.11.

In this next Remark, we find an upper bound for the number of elements in
®)(Esep(0,7,2¢, X)). Since q is fixed, notice that the spanning sets for X\U have a

polynomial bound with degree q.

REMARK 4.12. Set ¢ = r5pan(0,m, 8, X\U, {f,9}) and p = rspan(0,m,€,Q,{f, g})
Then |®y(Esep(0,m,2¢, X))| < (¢ + 1)lept,

Proof: Let §; be the subset of [ tuples in ®;(Esep(0,n,2¢, X)) so that there
are exactly j of the y; € {yo,...,yi—1} that are in Espan(0,m,3,X\U). Be-
cause the y; € Espa,;(ﬂ,m,ﬂ,X\U) can not be repeated in ®;(z) we have j <
rspan(0,m, B, X\U,{f,9}) = ¢. This bound, ¢, of j is independent of n and inde-
pendent of [.

For ; there are (g) ways of picking these j points ys € Espan(0,m, 5, X\U).
Further there are {({ —\1) (=341 = U_l—'m ways of arranging these choices
in the ordered [ tuples. Also, there are rspan(0,m,¢,$, {f,g})l_j =pli < p!
ways of picking the remaining y; from Egpan(0,m,€,Q). Hence, |B;] < (g) U—_f!]-.)—!pl.
From this inequality, we have, |®;( Esep(0, 7, 2¢, X))| = jé0|cpj| < ]z::O (g) (l—ljﬁpl' By
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noting that (¢) < ¢! and %~ < I < 19 we have |®!(E 0,n,2¢ X))| < ; napt,
g that (1) < g¢'and ghy < < |©!(Esep( IS 3 qlp
Thus, |®;(Esep(0,n,2¢, X))| < (¢+1)19%'. B End of Remark 4.12.

By Remarks 4.11 and 4.12, rsep(0,7,2¢, X, {f,9}) = |®1(Esep(0, 7,26, X))| <
(¢+ 1)!lqpl where ¢ = rspan(0,m, 8, X\U,{f,¢}) and p = Tspan (0,7, €, 2, {f,9}).

Further, hsep(ze, {f’ g}’ X) =
lim sup% log(rsep(O, n, 267 X{fa g}))
n—00
< lim sup7—-— lo + 1)yt
< lim sup =y logl(g + 1)!ip] ;
= lim sup—~—{lo +1)!] +qlogi+1lo
I_'OOP(I_—IW{ gl(¢+1)!] + qlog g}

< 1_0151 , since ¢ is independent of . Thus, hgep(2¢, {f, g}, X) < log[rspan (0,m.¢,2,{£,0})]

m

Now note that we found an upper bound for when m is even, and further that

for any n > 0 if m even is chosen large enough, we have

lim Sup1°5[fspan(O;n,f,ﬂ,{f,y})] < lim Sup1°g["span(0,;",6,\9,{},9})] g
=00 m—00

Hence, hsep(2€, {f,g},X) < hspan(f’ {f,g}a Q) -~ hspan({f;g}79) = >
Since n > 0 was arbitrary, then hsep(2¢, {f,9}, X) < hspan({f, 9}, Q).

Now let € — 0, 50 hsep({f, 9}, X) < hgpan({f,9},Q). From the other section, we

learned that spanning and separating entropy are equivalent; thus, hspen ({f, g}, Q) =
hsep({f,9}, Q). This implies hsep({f, 9}, X) < hsep({f,9}, Q). Since @ C X, we ob-
tain hsep({f, 9}, X) > hsep({f,9},Q). B End of Theorem 4.13.

-

We stated earlier that we would present a proof of Remark 4.9 after the proof

of the Theorem.

Proof: Suppose y € X\U. Then by the definition of Q, there exists efy) > 0 such

that
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(4.6) 9, /1 (B(y,e(y))) N B(y,e(y)) =0

for all k > 1. Let z € B(y,“Y). If p € B(e,“Y) then d(z,p) < . Thus,
d(y,p) < d(y,z) + d(z,p) < 3%&2 which implies that p € B(y,e(y)). Hence,
B(z, ) C B(y, <(y)) implies that [g, f1*(B(y, 1)) N B(y, 42) = 0 for any k > 1.
Hence, ﬂfl will work for every = € B(y, 5(231) Since X\U is compact, cover X\U
with a finite number of %) balls where €(y) satisfies equation 4.6. Then we have
B(y1, i%]-Z), ee sy B(Yn, f—(%ﬁl) covering X\U and satisfying the discussion following
equation 4.6. Set ﬂ e min{i’f',—‘ll,...,ﬂ%")-}. Then B > 0 and from the previous
discussion for any z € X\U, we obtain [g, f]¥(B(z,8)) N B(z, ) = 0-for all k > 1.
L

THEOREM 4.14. Suppose (X, {f1, f2,---, fr}) is a non-autonomous system with pe-
riod r. The topological entropy of (X, {f1, f2,. ., fr}) is equal to the topological en-
tropy of (Q, { f1, f2, - - -, fr}) where Q is the non-wandering set of (X, {f1, f2,---, [r})-

Proof: As in the proof of Theorem 4.13 we choose a large m where m = ra for

some a € N. Then we proceed with the same steps as in Theorem 4.13. W

We now turn our attentiofi to exploring how changing the order in which func-
tions are applied affects the entropy of the non-autonomous system. Throughout,
we assume that our non-autonomous system is periodic. In particular, suppose
(X,{f,g}) is a non-autonomous period 2 dynamical system. In this next part, we

establish that h({f,g}) = h({g, f}). We first develop some Remarks and Lemmas
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which show that if we ignore whether the first iterate of a set is € spanned or sep-
arated, the omission does not change the entropy. What affects the entropy is not

the beginning of the sequence, but the tail of the sequence as in all limits.

REMARK 4.13. If S C X is (1,n,¢,{f,g}) separated then f|s is1 to 1.

Proof: Suppose z # y where z,y € S. By contradiction, suppose fz) = Ky).
Then (gof)¥(z) = (gof)¥(y) for all k > 1. Thus, this means that fo(gof)k(z) = fo
(gof)¥(y) for all k > 1. But this relationship implies that we can not (1,n,¢,{f,9})

separate S. W

LEMMA 4.6. If for n > 2, we have S C X is (1,n,¢, {f,g}) separated, then T' =
f(8) is (0,n —1,¢,{g, f}) separated. |

Proof: Let u,v € T where u # v. By the definition of the image of a function,
T = f(S) implies there are points z,y € S with z #y and f(z) =u and f(y) = v.
Since S is (1,m,¢,{f,g}) separated there exists m with 1 <m <n so that one of
the two following conditions holds:

d((g o f)¥(z),(go ¥(y)) > e if m = 2k where k > 1
OR

-

d(fo(go f)k(z),fo(go f)F(y)) > eif m =2k + 1 where k > 0.

The previous two conditions imply that
d(go (fog)(f(z)),g0(f0g)(f(y))) >ewherej=k—1 :

OR
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d((f 0 9)'(f(2)), (f 0 9)'(f(¥))) > € where i = k.

These two statements imply that
d(go (fog)(u),go(fog)(v))>ewherej=k—1
OR

d((f 0 g)'(u),(f 0 9)'(v)) > € where i = k.

In the case where m = 2k (where m is even), the assumption k¥ > 1 implies
that 2j +1=2k—2+1>0,and 2j+1=2k—1)=2k—-1=m—1<n—1.
In the case where m = 2k + 1 (where m is odd) k£ > 0 implies that 2: > 0, and

2t =2k=m—1<n—1. Hence, T is (0,n — 1,¢,{g, f}) separated. B

By Remark 4.6, |T'| = |f(S)| and from Lemma 4.6, we see that:

(47) T-?ep(l’na 6’ {f7g}) S TSEP(O’n il 1, 6’ {gaf})

Using the same argument with the roles of f and ¢ interchanged we see that

(4.8) rsep(1,m,€,{g, f}) < Tsep(0,n — 1,€,{f, 9})-

We find an upper bound for the maximal separating set, by splitting the separating

set into the “tail” of the set, and the “head” of the set.

LEMMA 4.7. Our upper bound estimate is rgep(0,n,€,{g, f}) < r5ep(0, 1,6, {g, f})+

Tsep(]-, n,e€, {g, f})
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Proof: Suppose S is a (0,7, ¢, {9, f}) maximally separated set, ie. |5 =
rsep(0,m,€,{g, f}). Set A= {AC S : for every a,b € A with a # b then d(a, b) > €}.
Since X is compact % is a finite set, so it has a maximal element A,, € A, where
|Am| > |A| for any A € 2. Now, || = |Am|+|S\Am|. Any two points z,y € S\Am

where z # y satisfy at least one of the two equations:

d((f 0 9)¥(z),(f 0 9)*(y)) > € where k > 1,

d(g o (fog)*(z),g0(fog)*(y)) > € where k > 0.

Hence, S\ Ap| < rsep(1,m,€,{g, f}). Further, by the definition of Amp, |Amf <
TSCP(O') 1) 6, {g’ f}) ThllS, 'rsep(o,n, 6’ {ga f}) S rsep(o’ 13 63 {g,f})+rsep(1, n7 67 {g’ f})
- -

Now we establish that ignoring the first iterate does not change the value of

the entropy.

LEMMA 4.8. We have

lim suplog Paep(0, 7, €, {9, £}) = lim supIog rsep(1,m,€,{g, f}) .

n—00 n o0 n
Proof: First, note that rs,(0,1,¢€,{g, f}) is independent of n, so there exists

a constant ¢ where r4e,(0,1,¢, {g, f}) < c. Hence,

lim sup 28ser0 L& 9, 1) + raep(Lym, €, {g, /)

n—00 n

< T suplog[c =+ Tsep(la n,e, {g, f})]

n—00 n

= limsuplog Tsep(la na 67 {g’ f}).

n—00 n
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Hence, by Lemma 4.7, and the previous inequality,

lim Suplog r“?(oa n, e, {ga f}) < lim suplog rsep(l, N, €, {g, f}) .

n—00 n n—00 n

By the definition of 7scp, we see that reep(1,7,€,{g, f}) < 7sep(0,n,¢€,{g, f}). Thus,
lim Suplog rsep(l’ n, €, {g, f}) S lim Suplog rsep(O, n,é€, {g, f}) ;

n—00 n n—00 n

THEOREM 4.15. Reversing the order of the function application of a period 2 non-

autonomous system does not change the € separated entropy,

hm Suplog r-’eP(O’ n,e, {fa g}) = llm suplog rsep(O, n,e€, {g, f}) '

n—0o0 n n—o00 n

This means that the topological entropy of {f, g, f,g,...} is equal to the the topo-

logical entropy of {g, f, g, f,---} i-e. k({f,9}) = h({g,f})-

Proof: By inequality 4.7, we have

lim Suplog "'sep(la n, ¢, {fag})

n—00 n

< T Suplog Tsep(oa = 1€ {g, f})

n—00 n

< Tin Suplog rsep(oa n-=1.% {gv f})

n—00 n—l

Sges Suplog Tsep(l, n-1,¢ {g’ f})

n—00 n—1

Lemma 4.8 justifies the previous step. Thus, the first expression is
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“Ea Suplog "'sep(la n, ¢, {g, f})

n—00 n—1

by the definition of r4.p,. The previous expression is

S hm Suplog Tsep(o) n— 1, €, {fag})

n—00 n—1

because of inequality 4.8. The previous expression

i B suplog 7'sep(O, n, e, {fa g})

n—00 n

by the definition of lim sup.

By interchahging the roles of f and g and applying Lemma 4.8 we have

lim suplog rsep(lom, & {,9}) = lim Suplog rsep(0, 1, €, {fag}).
Lrpdss n n—00 n

Now we notice that we produced a chain of ordered inequalities and equalities where

* the first expression and last expression in the chain are equal. Hence,

. . ! 0,n— :
lim suplog r“p(l”ln’f’{f’g}) = lim sup=& raep( ,’ln_ll’c’{g’f}) = lim sup
n—oo n—0o0 n—oo

log rsep(O,ﬂ,f,{fyé}). ®

n

Now that we have shown that A({f,g}) = h({g, f}), we use this fact about
period 2 non-autonomous systems to prove an unintuitive fact about autonomous
systems. In particular, we prove that h(go f) = %h({f,g}) and that %h({g,f}) 2
h(f o g); hence, h(g o f) = h(f o g). In general, g o f is a very different function
than f o g. In general, these two functions are not topologically conjugate. We
then extend this relationship to an arbitrary period r. This is important because
it is an attempt to answer the question, to what extent does the behavior of a

periodic non-autonomous dynamical system change, when we change the order in



68

which the functions are applied? In particular, this question is interesting in the
context of neural computation because one may not always train on a set of examples
in the same order. It is important to discover when a trained neural network will
behave differently by merely switching the order of a few examples presented during

training.

REMARK 4.14. If T is (0,n,¢,{g o f}) separated, then T is (0,2n,¢, {f,g}) sepa-

rated. -

Proof: Let z,y € T. Then by definition 0 < k& < n so that d((g o f)*(z), (g o
£)¥(y)) > €. This implies that d([g, f]2*(z), [9, f1**(y)] > €, and 0 < 2k < 2n. W

REMARK 4.15. The non-autonomous system is an, uj)per bound for the g o f au-

tonomous system, rsep(0,2n,€,{f,g}) > reep(0,n,¢,{g o f}).

Proof: Apply Remark 4.14 and the definition of rge,.

LEMMA 4.9. Our strict upper bound for epsilon entropy of g o f is h({f,g},€) >
ih{go f},e).

Proof: We obtain the foHowing chain of inequalities utilizing Remark 4.15.

Thus, h({f,g},¢) = lim sgipbs raep(Ok.cf,9})

log rsep(0,2n,¢,{f,9})

> lim sup =
n—oo
> lim sup %8 T””(%’:’f’{gc’f}) = Zlim suplog "e”(o;z"’e’{yd}) = 3h(go fe). W

n—0oo n—00
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LEMMA 4.10. The upper bound for the entropy of go f is h({f,g,...}) > %h(gof).
Proof: Apply Lemma 4.9 for € approaching 0. W

Now we work toward the inequality in the opposite direction, A({f,g,...}) <
%h(g ‘o f). We begin by proving a technical remark that relies on the uniform
continuity of f and g. Since by assumption X is compact, f and ¢g are uniformly

continuous.

“

REMARK 4.16. Let € > 0. There exists 7(e) > 0 so that d5(e) > 0 df(e) < €
and so that d(z,y) < 6¢(¢) implies that d(f(z), f(y)) < €. Suppose T is a set that
(0,n,6¢(€),g0 f) spans X. Then T also (0,2n,¢,{f,g}) spans X.

Proof: Let z € X. Then there exists z € T so that d((g o f)*(z), (g0 f)¥(2) <
6¢(€) < e where 0 < k < n. To show that T' (0, 2n,¥, {f,g}) spans X the only part
that remains are the functions fo(go f)¥ where 0 < k < n. But d(fo(go f)¥(z), fo
(90 /)¥(2)) < € because d((g o f)*(2),(g 0 [)¥(2)) < é(c) W

LEMMA 4.11. The reverse inequality is h({f,g,...}) < %h(g o f).

Proof: The value rgpqan represents the minimal number of elements that span
X. Hence, by Remark 4.16, for any € > 0, we can find an n = é¢(¢) < e. Thus,

Tspan(oa 2n, €, {f, g})
< rspan(0,m,6¢(€),g 0 f). Thus, h({f,g},¢€)

1 span\Y, Ky €, 1],
oy BT (0,6 15,0}
k—o0 k
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< K sup log Tspan (0, 2n, €, {f, g})

n—00 2n

< Tin supllog Tspan(O, n,1,9 0 f)
n—00 n

e %h(g o f, 77)
Hence, for any ¢ > 0 we were able to find an n > 0 so that A({f,g},e} <

h(g o f,n). Since €1 < € implies that A({f1, f2,...},€2) < h({f1, f2,...},€1), we
obtain h({f,g}) < Lh(go f). @

THEOREM 4.16. If X is a compact metric space, and f,g : X — X are continuous

functions, then h({f,g}) = %h(g of). m

Proof: The result is an immediate consequence of Lemma 4.11 and Lemma

4.10. W

COROLLARY 4.5. Period 2 function composition commutes with respect to topolog-

ical entropy, h(go f) = h(f 0g).

Proof: By Theorem 4.15, h({f, g}) = h({g,f}). B

Now, by using Corollary 4.5 and induction, we extend this result to period n.



